3.436 \(\int \frac{(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx\)

Optimal. Leaf size=204 \[ -\frac{(-b+i a)^{3/2} (A+i B) \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{\sqrt{b} (3 a B+2 A b) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{(b+i a)^{3/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d} \]

[Out]

-(((I*a - b)^(3/2)*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d) + (Sqrt[b
]*(2*A*b + 3*a*B)*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d - ((I*a + b)^(3/2)*(A - I*
B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + (b*B*Sqrt[Tan[c + d*x]]*Sqrt[a +
b*Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 1.73133, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.257, Rules used = {3607, 3655, 6725, 63, 217, 206, 93, 205, 208} \[ -\frac{(-b+i a)^{3/2} (A+i B) \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{\sqrt{b} (3 a B+2 A b) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{(b+i a)^{3/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

-(((I*a - b)^(3/2)*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d) + (Sqrt[b
]*(2*A*b + 3*a*B)*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d - ((I*a + b)^(3/2)*(A - I*
B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + (b*B*Sqrt[Tan[c + d*x]]*Sqrt[a +
b*Tan[c + d*x]])/d

Rule 3607

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*
f*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3655

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x
]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n*(A + B*ff*x + C*ff^2*x^2))/(1 + ff^2*x^2), x], x, Tan[
e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx &=\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}+\int \frac{\frac{1}{2} a (2 a A-b B)+\left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)+\frac{1}{2} b (2 A b+3 a B) \tan ^2(c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}+\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} a (2 a A-b B)+\left (2 a A b+a^2 B-b^2 B\right ) x+\frac{1}{2} b (2 A b+3 a B) x^2}{\sqrt{x} \sqrt{a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}+\frac{\operatorname{Subst}\left (\int \left (\frac{b (2 A b+3 a B)}{2 \sqrt{x} \sqrt{a+b x}}+\frac{a^2 A-A b^2-2 a b B+\left (2 a A b+a^2 B-b^2 B\right ) x}{\sqrt{x} \sqrt{a+b x} \left (1+x^2\right )}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}+\frac{\operatorname{Subst}\left (\int \frac{a^2 A-A b^2-2 a b B+\left (2 a A b+a^2 B-b^2 B\right ) x}{\sqrt{x} \sqrt{a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}+\frac{(b (2 A b+3 a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}+\frac{\operatorname{Subst}\left (\int \left (\frac{-2 a A b-a^2 B+b^2 B+i \left (a^2 A-A b^2-2 a b B\right )}{2 (i-x) \sqrt{x} \sqrt{a+b x}}+\frac{2 a A b+a^2 B-b^2 B+i \left (a^2 A-A b^2-2 a b B\right )}{2 \sqrt{x} (i+x) \sqrt{a+b x}}\right ) \, dx,x,\tan (c+d x)\right )}{d}+\frac{(b (2 A b+3 a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}+\frac{\left ((a+i b)^2 (i A-B)\right ) \operatorname{Subst}\left (\int \frac{1}{(i-x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac{\left ((a-i b)^2 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} (i+x) \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac{(b (2 A b+3 a B)) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{b} (2 A b+3 a B) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}+\frac{\left ((a+i b)^2 (i A-B)\right ) \operatorname{Subst}\left (\int \frac{1}{i-(a+i b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{\left ((a-i b)^2 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{i-(-a+i b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}\\ &=-\frac{(i a-b)^{3/2} (A+i B) \tan ^{-1}\left (\frac{\sqrt{i a-b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{\sqrt{b} (2 A b+3 a B) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{(i a+b)^{3/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{i a+b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 0.962479, size = 243, normalized size = 1.19 \[ \frac{-(-1)^{3/4} (-a-i b)^{3/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{-a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )-\sqrt [4]{-1} (a-i b)^{3/2} (B+i A) \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )+\frac{\sqrt{a} \sqrt{b} (3 a B+2 A b) \sqrt{\frac{b \tan (c+d x)}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a+b \tan (c+d x)}}+b B \sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

(-((-1)^(3/4)*(-a - I*b)^(3/2)*(A + I*B)*ArcTanh[((-1)^(1/4)*Sqrt[-a - I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan
[c + d*x]]]) - (-1)^(1/4)*(a - I*b)^(3/2)*(I*A + B)*ArcTanh[((-1)^(1/4)*Sqrt[a - I*b]*Sqrt[Tan[c + d*x]])/Sqrt
[a + b*Tan[c + d*x]]] + b*B*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]] + (Sqrt[a]*Sqrt[b]*(2*A*b + 3*a*B)*Arc
Sinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + (b*Tan[c + d*x])/a])/Sqrt[a + b*Tan[c + d*x]])/d

________________________________________________________________________________________

Maple [B]  time = 0.826, size = 2396041, normalized size = 11745.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (d x + c\right ) + A\right )}{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sqrt{\tan \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^(3/2)/sqrt(tan(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \tan{\left (c + d x \right )}\right ) \left (a + b \tan{\left (c + d x \right )}\right )^{\frac{3}{2}}}{\sqrt{\tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**(3/2)/sqrt(tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out